
TextField Control

871REALbasic Language Reference

Examples Opening the text in a FolderItem into a TextArea.

The File Type Set defines the common file type, Text, and the GetOpenFolderItem call
lets the user open the desired text document. The Open method returns a Boolean that
is True if the Open operation was successful.

Saving the text in a TextArea to a FolderItem:

Saving is largely the mirror image of opening a text file. GetSaveFolderItem gets a
FolderItem that’s used to save the contents of the TextArea. The Save method then does
the save, returning True if the save was successful. If you pass True as the second
parameter of Save, then the styled text information will be saved.

See Also Font, FontCount functions; Paragraph, Range, StyleRun, StyledText,
StyledTextPrinter, TextEdit classes.

TextField Control
The standard editable text field. A TextField control can contain one line of text, with
one font, font size, and style. The TextArea control can contain multiple lines of text
and display multiple fonts and styles.

Super Class TextEdit

TextField inherits from TextEdit, the base class for both TextArea and TextField.
TextEdit is an abstract class and it is not intended to be instantiated. TextArea is the
multiline and styled text control. TextField is the single-line text control.

Dim f as FolderItem
f=GetOpenFolderItem(FileTypes1.Text)

If f <> Nil Then
 If Not TextArea1.Open(f) Then
 MsgBox "Open failed"
 End if
End if

Dim f as FolderItem
f=GetSaveFolderItem(FileTypes1.Text,"Untitled")

if f<> Nil Then
 If Not TextArea1.Save(f,False) Then
 MsgBox "Save failed"
 End if
End if

872 REALbasic Language Reference

TextField Control

Because this is a RectControl, see the RectControl for other properties and events that
are common to all RectControl objects.

Properties

Events

Name Type Description

CueText String Use to display a cue or suggested value in the field.
The CueText appears in the TextField in grey text.
CueText is currently supported on Windows and
Linux. It will be available in Macintosh Cocoa
builds.

LimitText Integer The maximum number of characters allowed in the
TextField.
The value of zero does not limit text. LimitText
works for normal text entry, copy and paste, and
drag and drop.

Password Boolean If True, bullets appear in field instead of the
characters the user typed.
The Cut and Copy Edit menu items are
automatically disabled. On Mac OS X 10.3 and
above, the Password property enables and disables
secure input.

ReadOnly Boolean If True, the text cannot be modified.

SelAlignment Integer Controls paragraph alignment of the selected text.
The class constants and values are shown below:
AlignDefault(0): Default alignment
AlignLeft(1): Left aligned
AlignCenter (2): Centered
AlignRight (3): Right aligned
-1: Mixed—The selection spans multiple paragraphs
with different alignments.
Currently, the Default alignment is the same as Left
alignment.

SelPlain Boolean If True, the selected text is plain.

SelTextColor Color Used to get and set the text color of the TextField’s
text.

SelTextFont String Used to get and set the text font of the TextField’s
text.

SelTextSize Integer Used to get and set the font size of the TextField’s
text.

Name Parameters Return Type Description

GotFocus The cursor has moved into the TextField.

LostFocus The cursor has left the TextField.

TextField Control

873REALbasic Language Reference

Methods

Class
Constants

The following class constants can be used to specify the value of the Alignment
property.

MouseDown x as Integer,
y as Integer

Boolean The mouse button was pressed inside the TextField’s
region at the location passed in to x,y.
Return True if you are going to handle the
MouseDown. Returning True prevents the TextField
from handling the mouse click.

MouseUp x as Integer,
y as Integer

The mouse button was released inside the control’s
region at the location passed in to x,y.
This event will not occur unless you return True in the
MouseDown event.

SelChange The range of characters highlighted has changed.

TextChange The Text property of the TextField has been changed.

ValidationError InvalidText
as String,
StartPosition
as Integer

The user has tried to enter a character that is prohibited
by the TextField’s Mask property.
InvalidText is the entire character string up to and
including the invalid text. StartPosition is the starting
character position in which the actual invalid text was
entered. The first character is numbered 1. If no code is
provided in this event and a validation error occurs,
REAL Studio plays the system beep.

Name Parameters Return Type Description

Name Parameters Return Type Description

Copy Copies the selected text in the TextField to
the Clipboard, including the styled text
information.

Paste Pastes the styled or unstyled text on the
Clipboard into the TextField at the insertion
point, adding the text to the existing text.

SelectAll Selects all of the text in the TextField.

SetFocus Gives the TextField the focus, sending all
keydown events to the TextField and
moving the cursor there.

Class Constants Description

AlignDefault Default alignment, currently the same as Left alignment.

AlignLeft Left alignment.

AlignCenter Center alignment.

AlignRight Right alignment.

874 REALbasic Language Reference

TextField Control

Notes

Execution
order of
MenuHandlers

The intrinsic control menu handlers (such as TextField.SelectAll) are handled after any
user-defined menu handlers on the TextField subclass (if it was subclassed). This means
that if you have a SelectAll handler on the Window of the TextField, it will no longer
be called when the TextField has focus, because the TextField will now handle it first.
In this situation, create a TextField subclass that defines its own SelectAll handler, and
handle the desired behavior there.

Masks Use the Mask property to filter user input on a character-by-character basis and add
formatting characters. For example, a mask for a Telephone number field can add
parentheses, spaces, and dashes as literals, that are used for formatting, and the digit
mask symbol ‘#’ to restrict entry to numbers only.

The following table shows the characters that you can use to define a mask.

Mask
Character

Description

The single digit placeholder. The user can type only a digit (numeric)
character in this position. For example, the mask “(###) ###-####” accepts
the entry 5551212121” and returns “(555) 121-2121”.

. Decimal placeholder.
The decimal placeholder that is actually used is specified in the user’s
International settings. The character is treated as a literal (formatting)
character for masking purposes. For example, the mask “##.##” accepts the
entry “2344” and returns “23.44” (for US systems).

, Thousands separator.
The thousands separator that is actually used is specified in the user’s
International settings. The character is treated as a literal (formatting)
character for masking purposes. For example, the mask “####,###” accepts
the entry “123456” and returns “123,356”.

: Time separator.
The time separator that is actually used is specified in the user’s
International settings. The character is treated as a literal (formatting)
character for masking purposes.

/ Date separator.
The date separator that is actually used is specified in the user’s
International settings. The character is treated as a literal (formatting)
character for masking purposes. For example, the mask “99/99/\2099”
accepts the entry “123109” and returns “12/31/2009”. The “\20” enters the
default century and decade and only accepts the year in the first decade of
the century.

TextField Control

875REALbasic Language Reference

Here are some examples

:

\ Mask escape character.
Treats the next character in the mask as a literal. The escape character
enables you to use the ‘#’, ‘&’, ‘A’, ‘?’ (and so on) characters in the mask.
The escapted character is treated as a literal (formatting) character. For
example, the mask “\C\C-9999” accepts the entry “1234” and returns “CC-
1234”.

& Character or space placeholder. It accepts one character.
Valid values are the ASCII characters 32-126 and the non-ASCII characters
128-255. For example, the mask “&&-99999” accepts “li20520” and returns
“li-20520”.

C Character or space placeholder, where entry is optional. It operates like the
‘&’ placeholder. For example, the mask “CCCC-CC” formats “1233ed” as
“1233-ed”.

> Convert all the characters that follow to uppercase.
Uppercasing works beyond the ASCII range where appropriate, e.g., ü
becomes Ü. For example, the mask “>&&-#####” accepts the string
“li20520” and returns “LI-20520”.

< Convert all the characters that follow to lowercase.
Lowercasing works beyond the ASCII range where appropriate, e.g., Ü
becomes ü.

A Alphanumeric character placeholder, where entry is mandatory.
For example, the spec “AAA” specifies three alphanumeric characters.

a Alphanumeric character placeholder, where entry is optional.

0 The literal “0” (zero). For example, the mask “99.00” formats the entry
“22” as “22.00”. The mask “\C\C0-9999” accepts the entry “1234” and
returns it as “CC0-1234”. The mask “##,###.00” accepts the entry “12345”
and returns “12,345.00”. The mask “99.00” accepts “21” and returns
“21.00”.

9 A Single (numeric) digit.

? Alphabetic placeholder. Entry is optional. For example, the mask “???”
accepts three alphabetic characters. It rejects numeric characters.

Any
literal

All other symbols are displayed as literals for formatting purposes. For
example, the mask “99[9]” accepts the entry “333” and returns “33[3]”.

~ Reserved for future use. If you use “~” it will trigger an exception error.
Use \~ instead.

Mask Description
999,999.99 Formats 2222222223 as “2222,222.23” (Using the US

thousands separator.
99.00 Formats “22” as “22.00.”

Mask
Character

Description

876 REALbasic Language Reference

TextField Control

If the user tries to enter a character that is prohibited by the mask, a ValidationError
event occurs. The character that the user attempted to enter and the character position
is passed to the ValidationError event, where you can handle the keystroke as you like.

To cancel the Mask, set it to the empty string:

Adding Text
to a TextField

When appending text to a TextField, you may notice some flicker as REAL Studio
redraws the TextField to show the new text. This will happen if you appended the Text
property of the TextField like this:

This occurs because the entire contents of the TextField has to be redrawn. To avoid
this flicker, call the AppendText method instead. Simply pass it the text to be
appended. For example, this code reads an external text file into a TextField using the
Read method of the Readable class interface. The text is read in groups of 255
characters until the end-of-file is reached.

Text
Encoding

TextFields store all text internally in Unicode, which is able to represent a mixture of
characters from different writing systems. When you extract the text via the Text or
SelText properties, this text is returned in UTF-8.

###-##-#### //US Social Security number. Fomats “111111111”
as 111-11-1111.

TextField1.Mask="###-##-####"
TextField1.Mask="(###) ###-####" //US Phone number, with area code

TextField1.Mask=""

Mask Description

TextField1.Text=TextField1.Text+"my new text"

Dim f as FolderItem
Dim i as integer
Dim stream as BinaryStream
f=GetOpenFolderItem(FileTypes1.Text) //file type defined in File type set
If f<> Nil Then
 stream=BinaryStream.Open(f,False)
 Do
 TextField1.AppendText stream.Read(255,Encodings.WindowsANSI)
 Loop Until stream.EOF
 stream.Close
End if

TextInputStream Class

877REALbasic Language Reference

Using Class
Constants

The following class constants are available to set paragraph alignments. Set the
alignment of the entire contents of the TextField by assigning a constant to the
Alignment property.

For example, the following code in the Action event of a control array sets the
alignment of the text in a TextField. The Action event is passed an index parameter
that indicates which control was clicked.

See Also Font, FontCount functions; Paragraph, Range, StyleRun, StyledText,
StyledTextPrinter, TextEdit classes.

TextInputStream Class
In order to read text from a file, you need to create a TextInputStream object.
TextInputStreams have methods that allow to read from a file, check to see if you are at
the end of the file, and close the file when you are done reading from it. They are created by
calling the Open shared method. If you are working with a file with an encoding that is not
UTF-8, you should set the value of the Encoding property.

On Windows and Macintosh only, TextInputStream objects can work with files larger
than 2 gigabytes.

Super Class Object

Value Class Constant
0 AlignDefault
1 AlignLeft
2 AlignCenter
3 AlignRight

Sub Action (Index as Integer)
 Select Case Index
 Case 0
 TextField1.Alignment=TextField.AlignDefault
 Case 1
 TextField1.Alignment=TextField.AlignLeft
 Case 2
 TextField1.Alignment=TextField.AlignCenter
 Case 3
 TexField1.Alignment=TextField.AlignRight
 End Select

